

DALLAS ATARI COMPUTER ENTHUSIASTS

VOLUME 4 ISSUE 8 AUG 1983

DAL-ACE

PAGE

PRESIDENT ${ }^{9} 5$
 PER5PECTIUE

First, I would like to thank Tom for writing the Perspective for me last month. When the boss says that you will spend three weeks in Oregon you go.

NEWS FLASH!! The new 800's that were shipped in the last few months have a new CPU board in them. NO RUMOR, this is fact because I have one in my computer. The new board has a new b5xx microprocessor which we think is the 65C102. A phone call to the Arlington service center uncovered that the new chip is the same one that is used in the 5200 game machine. The most notifable change to the computer is the lack of it going to sleep during disk reads and writes.

By now most of you know that we have moved to a new meeting place. I know that it is not the easyest place to get tos but the move was long needed. Dur membership is now over 400 and still growing. Just because we have moved, please keep looking for bigger and better meeting places.

With our move to the new building, a few changes are in order. First, when you come into the building, you will show your club card at the door. For guests, they will be asked to sign a list which we will check each month. After two months they will be asked to please join the club. Second, newsletters will be picked up at the door. Thirds the dealer area will be available only to paid club members.

Below, for those of you that have not made it to the meeting, is a map showing how to get there.

ANATOMY OF DOGGIES

(by Garry Francis, reprinted from ACE N.S.W., Ausiralia)

Who the Hell is Stan Ockers Anyway?

Way back in June 1981, the Eugene ACE Newsletter published a lunar lander program written by a fellow named Stan Ockers. This in itself was not unusual, but Stan returnec with another program in the next issue. And the next. And the next. In fact, this prolific programmer from Lockport, IL has now written a program (or Sometimes two) for every single issue of the ACE Newsletter since June 1981
In December 1981, editor Mike Dunn awarded Stan with the First Editor's Award. His work is often reprinted in ANTIC and the Michigan ACE Newsietter and some programs (such as Chicken) are already considered classics.
Stan's programs may be divided into 2 very distinct categories - games and utilities. They are like a developing series of tutorials in acvanced graphics techniques from BASIC. His philosophy has been "...pertaps the best way to explain what is going on is to go through an actual program But even if you don't want to learn about fancy graphics, the programs are still fun to use.

I have always admired Stan Ockers' work, but I was astounded to find out nearly all his programs were developed on a cassette based Atari 800 with 16k RAM and a black and white TV! He didn't even have an assembler! The moral is, of course, you don't need 256k and a quadruple density disc dive to write oood progrants, as many people seem to think. You merely need a good imagination and a lot of hard work.

Enter Doggles

Doggies has always been one of my favourite of Stan Ockers' games I oripinally tooked through the code to see how on earth it worked. Just recently, I decided it is an excellent program for the magazine. Stan has often pointed out minor deficiencies (such as lack of color), which he leaves for readers to fix themselves. So I set about to do a bit of polishing up to Doggies. Unfortunately, my polishing up got out of hand and I have now completely restructured the program, removed a couple of minor bugs. improved the response time, screen display and colors and renumbered it But despite the weeks of work I put into it, it is still Stan Ockers' program. He should be congratulated on doing such a fine job and making my task such a pleasure.

Program Flow

Doggies begins by jumping to a massive block of initialization code which is placed at the end of the program so as not to slow things down when the main program is executing later on.

I believe the first, thing you should do in any program is to have something happen immediately after typing RUN, even it you only clear the screen and print the fitie. A pause of 2 or 3 or even 20 seconds before anything happens is totally unacceptable. as the user may think the program thas crashed. You should also make no assumptions as to screen conditions before the program was run. Therefore, as a rule of thumb, always stan the initialization with a GRAPHICS statement, foliowed by the necessary POKEs and SETCOLOR statements to set margins, colors and so on, even if you are using default values. Doggies also clears out and reserves an area of memory at the top of RAM (see Memory Allocation), then prints the instructions and the word "INITIALIZING" so you know what's going on. You can now read the instructions oblivious of the initilization which continues as you read. This takes about 11 seconds. When finished. "INITIALIZING" is overprinted by another message to "Press START to begin". When you've done so, the screen will be cleared, player missile graphics are enabled and the vertical blank interrupt routine is set up. The BREAK key is also disabled to force you to use SYSTEM RESET to abort the program. This is the only way to ensure all system parameters are back to normal when you return to BASIC. Whew!

We now set up the screen for a new game and cycle through the main program loop from lines 50 to 80 . Yes, that's right! The main program loop is a mere 4 lines long! The remainder of the program is subroutines for specific actions. Each subroutine commences on a line number of a multiple of 100 and is preceded by a REM to indicate its function. I will delve into some of these later. The remainder are fairly straightforward.

Doggies uses a number of the ATARI's special features such as interrupt processing, player-missile graphics and a redefined character sel. We'll now take a look at some of these aspects, but be warned: A good working understanding of BASIC is assumed.

Memory Allocation
As a lot of our members are beginners with minimum systems, 1 intended night from the start for Doggies to run on a cassette based system with only 16k RAM. It does this quite admirably, but if you've got a disc based system, you'll need to delete all the REMarks if you expect to run it in 16k. Mou shouldn't really be using a disc drive with only 16 k anyhow, as there is jus too little room left for programs or high resolution graphics modes.)
Figure 1 shows the maximum memory requirements for Doggies when typed in exactly as shown in the listing. RAMTOP is an Operating System pointer at memory location 106 (S6A) which tells us the page number of the first non-RAM byte in memory. (A page is a block of 256 bytes). By POKEing a lower value into RAMTOP, we can fool the system into thinking it has less RAM than it actually has. When we carry out a GRAPHICS command. the display memory and display list will be written below the new value of RAMTOP, thereby reserving an area for our own use. We use this technique in Line $\mathbf{2 0 0 0}$ to set aside an area for player-missile graphics and the redefined character set.

The player-missile graphics require 4 pages (or 1024 bytes) of memory for double line resolution ano must start on a 1k boundary. We define the starting location with the variable START. The first 384 bytes of this area (i.e. START to START + 383) are not used. The area from START + 384 to START + 511 is reserved for missiles, but we will not be using them. It seems a shame to waste 512 bytes, so seeing the redefined character set requires 512 bytes. we can store it in this area. We also need a 1 page buffer between the display mamory and START due to the RAMTOP dragon who gobbles up the first 64 mamory and START due to the RAMTOP dragon who gobbles up the first 64 bytes above RAMTOP
command are executed.

The GRAPHICS 0 display used for the instructions is shown in figure 1 as it is more meory intensive than the GRAPHICS 18 display used for the game itself. Just out of imerest, GRAPHICS 18 only requires 20 bytes for its oisplay list and 240 bytes for its disptay memory.

You can see from Figure 1 the BASIC program itself requires 7245 bytes just to reside in memory. The structure of the tokenized BASIC program is not important at this point.) When run, it will then take up an extra 61 bytes for string storage plus a variable amount for the run-time stack (this keeps track os return addresses for GOSUBs and FOR...NEXT loops.) The area labelled "DOS" is only applicable if you've got a disc drive booted The figures are for DOS 2. The area labelled "Operating System RAM" is resenved by the Operating System for a vaiety of functions. (Maybe we could delve intc all this slutf in luture issue.) By adding up the number of bytes used by your system, you can see a casselte based system requires well under 16 k (ncte 16 k is 16384 bytes), whereas a disc based system requires just over 16 k , hence the need to delete the REMarks for a disc based system with only 16k

Player-Missile Graphics
Whenever using player-missile graphics, you must first resenve ari area (as discussed above; to store the images and then clear this area of any extraneous garbage. I used a littie trick to accomplish the latter by issuing a GRAPHICS 21 command prior to reserving the P-M graphics area isee Line 2000). This has the effect of clearing out 960 bytes at the top of memory for the GRAPHICS 21 display. When RAMTOP is moved down, the 640 bytes used by P-M graphics remains undisturbed and set to all zeros. GRAPHICS 0 or 5 could also be used to clear out the same amount of memory, but these may have caused a disturbing flasn of blue from the background color of the text portion of their displays. Care to minor details like this makes a really protessional program.
Only Player 0 is used (for the bone) and this is double width. Its shape is read directly into the Player 0 area (START +512 to START +639) at Line 2140.

Vertical Blank Interrupt Processing

The vector to the Vertical Blank. Interrupt (VBl) service routine is set by he call $X=$ USR(1536) as the very last function of the initialization code. See the assembled source code for more details. For further information on how a VBI works, see "Flashing Cursor" in the December 1982 issue of INSIDE INFO. x Once set up, the VEI reads the joystick to determine whether it has been pushed left or right and moves the bone accordingly. As this is done 50 times per second regardiess of what else is happening in the program, it results in a beautiful smooth motion. Again refer to the assembled source code for more details.

Redefined Character Sel

Two payes of the character set in ROM (i.e. 64 characters or 512 bytes) are copied to the new locations in our reserved area. This process is speeded up by utilizing a machine language routine stored in MLS, (Refer to the assembled source code to see how it works.) It was stored in a string so you can easily incoroporate it inot any of your own programs. The general form of the call is $\mathrm{X}=\mathrm{USR}(\mathrm{ADR}(M L \$), 57344, C H) .57344$ is the address of the start of the character set in ROM. Change this to 57856 if you wish to copy the second hall of the character set (i.e. lower case letters and conrol graphics characters). CH is the address of the start of your new character set. You may also use this routine to copy the whole of the character set (i.e. 128 characters or 1020 bytes) by changing the last number of the DATA statement in Line 2170 from 2 to 4 . This indicates how many pages are to be copied
The Operating System pointer CHBAS at location 756 (\$214) tells ANTIC where the character set starts. Note we do not change this until after the instructions are cleared from the screen, otherwise some of the letters change into parts of little doggies while we try to read them. Very annoying! When the character set has been copied, we redefine 34 of the 64 characiers. This is the mos: time consuming part of the initialization. Allocating which characters are to be changed is quite a challenge. as the doggies require 34 characters, the score requires 10 , and the titles and various messages I want to print require about 24 characters - a total of 68 characters, but only 64 characters are in a GRAPHICS 2 character set. I couidnit delete any parts of the doggies or the digits for the score, but by carefully rewording the messages and re-allocating some of te characters for carefully rewording the messages and re-allales ing was able to reach an acceptable compromise. Hence messages the doggies I was able to reach an acceptable compromise. Hence messages
like "GREAT STUFF" instead of "EXCELLENT", as the " X " became part of a like "GREAT STUFF" instead of "EXCELLENT", as the " X " became part of a
doggie. Every character except the comma is used at some time somewhere in the screen display

When the new characters are put together in the correct pettern, they will form the shapes for the varicus doggies. The shape of each doggie is made up of 6 characters in a 2 by 3 grid. As an example, the stationary doggie is shown in Figure 2. The characters for each shape are stored in DATA statements. Lines 1000-1013 are for the white doggies and Lines 1100-1113 are for the brown doggies. There must be at least 6 characters in each DATA statement, 80 the traling blank spaces in Lines $1010-1013$ are replaced by inverse blanks. This is important. The program will crash and you'll be given an error message otherwise. The DATA statements in Lines 1100-1113 are exactly the same as Lines 1000-1013. but in inverse video. This is how we get the 2 different colored doggies. A major subroutine of the program occurs at Lines 200-220. It prints the string DOGS at POSimiON X,Y. DOGS is determined by the variable LINE. By changing LINE, we can change the shape of the printed doggie.

The current position of the doggies is stored in PS (T for a white doggie, 2 for a brown doggie, and 0 for the blank space). By comparing PS with the final position represented in FS (Line 440), we can determine of he end has been reached.

Aftract Mode
I could say Doggies is constantly in attract mode, as something is always happening irrespective of what the user is doing. Every time through the main loop, the program checks to see if the fire button has been pressed. If it hasn't, then it randomly sefects a doggie and moves thim in accordance with one of 3 randomly selected subroutines. These have the effect of making him bark, wag his tall and stomp his feet. Even when the game is over, the attract mode continues while waiting for you to press START for a new game.

The ability to move a doggie when the game is over might cause havoc. This is averted by sefting a Hiag calied ATTRACT. When ATTPACT is 0 , the game is in progress and the GOTO in Line 80 makes sure the fire button is checked. When the game is over, ATTRACT is set to 10 so Line 80 will jump past the fire button routine.

Colors

The display uses total of 6 colors in a very plassing combination. The bleck beckground is colored by the beckground color cegister and the scungy yellow bone is colored by the Player 0 cotor register. Playtields 0 and 2 are used for the white doggies and brown doggies respectively. Piayfields 1 and 3 are used for the green writing and blue writing respectively (you won't see the blue until the game is over). Green writing can therefore be achieyed by printing a message in lower case and blue writing can be achieved by printing in inverse lower case. A problem arises here when we wish to print the score, as the digits 0 to 9 are in the range of characters colored by Playfield 0 , but we want them to be colored by Playfield 3. We therefore need to convert the score to atring and manipulate the individual digts to change their color from white to green. This is done in Line 430.

The colors show up fairly well on a black and white TV and the only evidence of color "bleeding" is from the brown doggies. This is an unvolidable problem common with dark luminances. In can only be overcome by careful selection of color combinetions.

Sounds

BARKs contains the range of tones for the doggies' cute barking sound used in Line 500. This was one point with which Stan Ockers was not pleased, but I could nol"come up with anything better. Apart from which, I quite like it.

The subroutine for the footsteps sound in Lines $\mathbf{9 0 0 - 9 1 0}$ is unusual. The odd numbered distortion value causes the speaker to click, then sllence. Turning the voice off then causes another click. When executed together, the 2 clicks are indistinguishable and sound as though they are combined to form one single louder click. Prior to entering this subroutine, the variables \mathbf{V} and INC are specified. V is the volume of the footsteps and INC is the increment by which the volume is increased or decreased. In this way the footsteps may stay at a constant volume while the doggie is stationary (iNC =0, decrease as the dogole watks away ($N \mathrm{NC}=-1$) or increase as the doggie approaches (NC = $=1$). Using a common subroutine ensures the timing of the footsteps is always the same. This subroutine is also the nason for the apparent duplication, of DATA statements at Lines 1010-1013 and 1110-1113.

scoring

Your score is incremented every time a doggie is moved. The object is to move all the doggies in as few moves as possible. 45 moves is the best you can do, but scores of around 21 are more common.

There is a sort of bug in the scoring routine. Even though if will never be encountered under normal use, I mention it here as a good exemple of deciding where to "draw the line" for certain error conditions. The score's color conversion mentioned above will crash if there are more than 3 digits in the score. I decided on a maximum of 3 digits for 2 reasons. Firstly, more than 3 digits will wraparound onto the next line and mess up the display. Secondly, you will have to be a complete moron to need 1000 moves. Even the smant alec who intentionally tries to crash the program will have to move one doggie every 5 seconds for an hour and a half before the program will complain. If the ides of this bug still worries you, just increase the size of MOVES in Line 2070 to 4. Our hypothetical smart alec will then be moving doggies for 14 hours!

One of the most important Espects of
One of the most important espects of any program is its human engineering. Here is where Doggies excells. It couldn't possibly be any simpler to use! After initialization, you need only press START for the game to begin. In fact, you can then press START again at any time and the game will restart. This comes in handy if you can see you've made a mistake and don't want to carry the game through to completion knowing you'll get a bad score.
The bone is conrolled by pushing left or right on a joystick plugged into Port 1. If it goes off the screen, it will wrap around to the other side. A doggie is selected by placing the bone under the doggie you wish to move and pressing the fire button. The bone is not very fussy when it comes to sefecting a doggie. It doesn't have to be directly under a doggie, just make sure at least half of it is under the doggie you wish to move. If it is exactly in the middle of 2 doggies. a choice still has to be made, so it opts for the doggie on the right.
The program won't let you make an illegal move. I won't spoll the surprise by telling you what happens, so try it and see for yourself.

As there is no keyboard input, the well known random color switching normally comes into effect after just under 11 minutes. As Doggies is such a compulsive game, you will quite likely be playing for well over 11 minutes, so the random color switching must be catered for. Any legal input (i.e. pressing START, pushing the joystick left or right or pressing the fire button) will reset the ATTRACT flag at location 77 (SAD), thereby avoiding the random color switching. If however you have to answer the 'phone or you go on holidays and forget to turn the computer off. the random color switching will still be enabled as usual. This will protect the phosphors in the TV set. When you come back, just move the joystick, press the fire bution or press START and everything will return to normal.
All in all, the human engineering is so well done even the youngest child (or the oldest computer critic) can also enjoy playing Doggies.
Conclusion Well, that about wraps it up for Doggies. If you've read this far and haven't keyed it in yet, then you're missing out on quite a treat. Doggies is undoubtedly the most professional game we've printed so far, so give it a go. We'll publish the solution next issue.

2 REN 1 DOCGIES
3 REN by Stan Ockers
1 REM : Eugene A.C.E. Meusletter
5 KEK : Jonuty 1982
6 REM Hodified By Garry Francis
7 RESI : Reprinted by A.C.E. (M.S.M.)
8 KEK F Februry 198 ,

11 cosso 2181
19 REN max Kain locs $\mathbf{y x}$
21 POK $711 i$? M;CRT(125);" dog gies":? th:? t6;" number of noves ";ch RS(16)
 :IF A THEN COSBE 210
48 IEXT C:POKE 299,120:POKE 53248,120: MOVE $=1: A T T R A C T=1$
50 IF STRIG(0) $=1$ THEN COSVB 300:0070 5 1
 KL 53248, $8: 001021$

81 COTO 54+ATTRACT

99 REM 2m Wiot doggie? $\mathbf{T I}$
$100 A=1 W(P A(C, C)): I F A=1$ THEN LDE: 10 18
110 IF $A=2$ THEN LIE $=1100$
$120 x=3 \times C-3$ PRETURN
199 REA 17X Draw doggie 78
200 FOR $ل=1$ TO 14:NEXT J
210 RESTORE LDE:READ DOCS:POSITION X. 6:? 46;DOCs (1,2)
229 POSITION $X, 7$:? $46 ; D 06 s(3,4)$:POSITI of $X, 8 ;$? $\$ 6 ; 00 C s(5,6)$:RETURN
299 REA min Process player's wove zrix 380 POKE 7,0:B=6:C=DT (PEEN(209)/24-1
.5): IF C <1 THEN $C=1$
311 IF $\mathrm{C}>7$ HEN $\mathrm{C}=7$

330 IF $B=C$ THEN RETURN
340 IF CCB-2 OR CXO+2 THEN COSSR 100:C OSEB BEOTRETURN
350 TEP=C:FRR $\mathrm{C=}=1$ TO 7:IF C=TEP THEN 408
$360 \operatorname{COSUB}$ 100:IF $A=0$ THEN 400
370 IF C CTEP TEN LTE=LDE+6
330 IF CDTEP TEN LDE:LDE+7
390 COSLB 211
400 NET C!C=TEP:COSE 101:COSB 508:
 910:LIE= DEE $2:$ DC $=-1: \operatorname{COSS18} 970$ 410 LIEA LE 2 2:COSLR 900:POSITION X,6
 :C=8
120 COSB 100:LDE= $D E+12: V=1: D C=1: C$ OS5B 901:LDE $=$ DE-2:COSR 983:LDEAI NE-11:GOSUB 710:COSVB 600
 JON 17,2:FQR I=1 TO LEN(nars):? \%;0K RS (ASC (HOLES (I, I))-32); :NEXT I
440 IF PSOFS THEN RETURN
550 POSTITON 2,4:IF MONE $=15$ THEN ? ${ }^{\circ}$ ©
" great stuff":CONO 488
460 IF HONEST NEN? S6;" good goin 9 ":coto 480
470 ? 6 ;"could be better"
480 posmina $b, 11:$? $6 ;{ }^{4}$ press start to
 499 RES min Bark 208
501 LDE:LDE $+5: C O S B$ 210:FTR I=1 TO 6 :SONO 1,ASC(BAPKS (I)),12,14-12:SOND 1,ASC (BAFKS (I)),14,II2:NEXI I
510 LDEELDE-5:COSB 210:SAND 1,0,1, O:SOND $1,1,1,0$:RETUR

+1:COSV 200:LDE =LDE-1:COSUB 200:NEX

710 LDE=LIE $+3: V=8: I N C=0: \operatorname{COS} 18990: L$ MELINE-3:COSVR 200:RETLRN
799 RES MII Shake head mix
811 FOR I=1 TO 3:LJE= $I E+6: C O S 818211$:LIEELDE-6:COSVE 200
811 LDE=LIET7:COSUR 218:LIE=LDE-7: COSGB 200:IEXT I:RETURN
899 KEM Im Footsteps sound mx
 OSVB 260:SNMD $1,6,13, v:$ SaND $1,6,1,8$
910 LDE $=$ DE-1:COSUE 201:50NO 1,11,1 3,U:SONO I,1,1,0:NOT I:RETUN
999 REA mi Shapes of dogsies ma
1008 DATA '()rTS
1001 DATA ' ()TIZ
1002 DATA '([IT8)
1603 DATA '(IXK-
1004 DATA ${ }^{(1)} 1+8$
1805 DATA !"ts\%s
1006 DATA . $1:$;28
1607 DATA $\mathrm{WY}<=$ Z\&
1018 DATA $>$? $\mathrm{I}^{2}+8$
1009 DATA >?].
1011 DATA EHK_
1011 data ehin_
1012 DATA X X
1013 DATA XD-
1110 DATA $\overline{(1) 278}$
1101 DATA '()TZ8
1112 DATA $1(1 \times 28$

1104 DATA 9
1165 DATA !"tyz8
1166 DATA $1 / 1 ; 28$
1167 DATA MY $<=28$
1108 DATA $\overline{3 P 2^{\wedge}+8}$
1109 DATA >? 12 K
1111 DATA PHWK
1111 DATA $\overline{\text { GKY }}$
1112 DATA X
1113 DATA XP
1999 REA In Intialisation m
2011 CRAPHICS 21 :START FPEEK(166)-A:POK
E 166,5TART-1:GRAPMTCS E:POKE 711,0:P0 KE 749,12:POKE 752,1:POKE 82,1

2111 POSITMN 16,1:? "DOCOIES":? :? "T
here are 3 white doopies on the left"
2121 ? "side of the screen and 3 bran docgies":? "on the right side. You n ust reverse"
2031? "their position by moving one d orgie at":? "a tine,":? ? ? "Use the jo ystick in Port 1 to put the"
2111 ? "bore under the doggie you wish to":? "nove, then press the fire butt on. The"
2454? "doggie will nove into the ept y space,":? "but only if he is next to it or no"
2061? "nore than ane doggie away.":? i? It can be done in 15 noves! Can y ar:? "do it?"
2171 POSTIDN 13,22:? "JITALISTAC" :ODN BNFKS (6), MS (38), DOCS (6), HOESS (3) ff (7), P4(7):Fq" $2220111^{\prime \prime}$
2479 REM 2×8 Dota for barking mex
248 RESTORE 2V90:FOR I=1 TO 6:READ A: aw
2199 DATA 97,169,97,9,5,5

2099 RED ma VBI service rotine IIX 2100 FRR I=1536 TO 158:REAS A:POKE I, A:NET I
2111 DATA $104,160,16,162,6,169,7,76,92$,228,173,1,211,72,41,8,208,6,230,219,1 14,24,144,7,144,41,4,208,11,198,269
2128 DATA $169,1,133,7,165,249,141,1,2$ 88,76,98,228
2129 RER max P-N Graphics 7 m
2130 POKE 5AD9,START:POKE 53256,1:PW
256STTART:POKE 53248,1:POKE 249,0:POKE 704,30
2148 FOR I=PM+602 TO PM+6AM:PIAD A:POK EI,A:NDT I
2158 DATA 195,255,195
2159 R23 20 Hove character set $\mathbf{m x}$ 2161 FOR $I=1$ TO 32:REAC A:RS(I) $=0$ RS 1
 5734,(01)
2171 DATA IM, 1M, 133,244,1M,130,213,
1M, 133,246, 1M, 133,245, 162,2
218 DATA $160,0,177,283,155,265,136,21$
8,249,234,244,231,216,212,246,240,96
2199 REM 208 Redefine characters 78
2190 READ $X: I F X=-1$ THEN 2566
2200 FOR $I=\alpha+\times X$ TO $C+X+7$:READ A:POKE
I,A:NEX I:COTO 2198
2211 DATA 8,7,15,31,61,109,111,110,111
2228 DATA $16,224,240,240,188,182,246,1$
18,246
2230 DATA $24,12,12,7,3,3,7,15,31$
$224 C$ DATA $32,48,48,224,192,192,224,241$,248
225 DATA $40,31,31,31,31,31,24,248,248$
2260 DATA $48,248,248,248,248,248,24,31$, 31
2271 DATA 56,1,7,31,63,125,207,239,266
2280 DATA $64,1,224,248,252,191,183,247$, 115
2290 DATA $72,15,12,15,7,3,7,15,31$
2300 DATA $80,240,48,240,224,192,224,24$ 1,249
2311 DATA $88,31,31,31,31,27,248,248,1$
2320 DATA $104,248,246,246,24,216,31,3$ 1,4
2330 DATA $112,1,7,15,31,63,63,55,55$
2340 DATA $124,0,128,192,192,64,17,255$,255
2350 DATA $208,55,7,7,3,3,7,15,31$
2361 DATA 216,254,224,254,252,192,224, 240,248
2370 DATA $224,127,7,1 D, 63,3,7,15,31$
2380 DATA 232,236,224,224,192,192,224, 240,248
2391 DATA 241, $1,7,31,63,1 D, 229,239,21$ 7
2401 DATA $249,1,224,246,252,24,27,24$ 7,243
2416 DATA 256,1,7,15,11,3,1,3,7
2928 DATA $326,128,224,248,268,192,128$, 192,224
2430 DATA $336,7,7,7,7,7,4,28,1$
2440 DATA $344,224,224,224,224,224,32,5$ 6,1
2450 DATA 392,192,192,128,192,192,192, 192,96
2461 DATA $440,1,1,3,3,2,254,255,255$
2471 DATA $446,3,3,1,3,3,3,3,6$
248 DATA $456,1,224,246,248,252,25,23$
6,236
2490 DATA $464,15,15,15,7,3,7,15,31$
2560 DATA $42,15,12,15,71,67,71,4,31$
2518 DATA $486,240,46,240,226,194,226,2$ 4, 246
2529 DATA 488,15,15,15,71,67,71,47,31

2538 DATA 496,24C,241,240,226,194,226,
241,248
2540 DATA 504,240,248,246,244,192,224,
241,248
2551 DATA -1
2559 REA 808 Return to user $\mathbf{2 0 8}$
2560 POSITION $9,22: ?$ "Press START to begin":POTE 53279,8
2571 FOK I=1 TO 20:IF PEEK(5329) >6 T
HEN KEXI I:FONE T53,2-PEEK(735):CDTO 2 51
2581 PCP :CKAPHICS 18:FOKE 13,64:FOKE
53774,119:POKE 756,STAFT:PONE 559,46:P OE 53277.3
2598 POKE 708,14:COE 709,104:POUE 710
,20:FOYE 711,136:A=USF (1536):RETUFO

Figure 1

1

Figure 2

06010	LI Off
01020	OR 15200

01010: m-COMPACTOR
oooso: mes Lettie article (parts):
01060 : IY TOH MEWHAN:
000701 BECDEEER 1982

00090:

00110: covatl Table s
00120 313131313131331313131313131318

10130	Fria	E0 350
00110	UTfio	[5 5 So
01550	BUFFHI	50 S1
00160	IABIE	[0 15
01370	TBLLO	5015
00180	TLHI	[2 513
01190	SAVEY	[0) ${ }^{\text {r }} 4$
16210	EPPLIS	ce ifs
01210	Horiclo	co
enzio	Monerl	co

01276 START LOA 1556

Msic : Procenk body :

04620 CHARES	LDF 6800
08138	LM ITABLIL,
Mist	SIA Mith
0645	III
N0460	Ldi lfablicil
08470	STA RLPLITS
60110	CLL
08480	LM TBLLO
00500	asc 6182
90518	STA TELO
00520	LDM TLHI
10530	ABC 3568
06540	51a TBLHI
H15SC BLOCX	LDY SAVEY
M568	LM Mita
01571	STA (BUTER),
cesid	CLC
06510	LM MUTILO
mbso	ADC 3121
066il	STh BUTILO
W620	LM MTHM
06131	NC 0300
W641	Sth MTHMI
00654	E4
0668	E2m ELTHOLM
P6670 MELITL	IMC MEPEATS
06610	EII BLOCX
06690	JiP CHMES

DAL-ACE

PAGE

EDUCATIDNAL SOFTWARE FEVIEW - WOFDMAKER (AFX)

REVIEWED BY: Nat Lewis - DALACE Education Special Interest Group
SOFTWARE FUFNISHED BY: Software, Etc. - Dallas
PFICE: $\$ 24.95$ AFX Retail, $\$ 21.80$ at Software, Etc. (DALACE discourt)
REQUIRES: 4OK(dist) उ2F(tape); BASIC, Joysticks, optionai printer

OVEFVIEW: This object of this geme is to mate as many 3 of is letter words as possible within a time limit. you can piay edeirist another person or the computer. The qame is recommended for ages 5 and older dependent on word skills.

GAME FLAY: The game begins with a short tune and titie screen. After the tune has played, a ment 15 used to aliow jovstick selected options of 1 or 2 players, time limit, and 3 or 4 letter fords. when the game statts, one or two oroups of the letters "Map: or "AAAA" appear depending on whether $\underset{\sim}{ }$ or 4 ietter words bete chosen. Foving the joystick sidewave piates an arroth moder a position of the group of letters. Movino the joystict fotmatos and bactwards changes the ietter at the posi tor ot the artow. When the player thints they have made a vailo woto pressime the joystict butcon chects the word against edult if dictionary and adds 5 points to their score $i f$ the word $1=$ ood pr sutracts 5 points for bat words. The timer starts at tha fomeat ot firtues selected and counts down to end the round ea so secont matnino is given to allow players to plot their ending si-atedy . lie round can be ended early by pressing STAFT. AS ofod botcs are made, they are saved in an on-screen word listo Onte efort is used, it may not be reused; redardless of whetner men or tho piayers are playing. At the end ot the roundi the wot inst on the screen can be optionally printed betore tie someopard is displayed.

GOOD FOINTS: The qame $i=$ user friendiy with a pritected drent. KEy, colorful screens, fast joystact response, enc ar atidrate. complete word list including such unusual ories as rad or rus.

NEGATIVE FOINTS: The print capability is limited in that it oniv prints words on screen at the end of a rouncix it would be more useful if all words could be printed with a sinote request at the end of a session. The full dictionary cennot be listed, the program is copy protected and the word list canolot be modified.

SLMMARY: The program had no detectable bugs, was fest and easy to use and is reasonably priced. If you need to learn all the valid 3 and 4 letter words, this is an enjoyable may to do it.

 578-8504

THE EXTRAORDINARY 4MHz, Z80, DOUBLE DENSITY CP/M 2.2

 COMPUTER: THEStandard features include the ability to run up to four $51 / 4^{\prime \prime}$ or $8^{\prime \prime}$ drives. Densities, sizes and types can be intermixed! The ATR8000 has a standard CENTRONICS parallel port and a RS-232 port.
It interfaces to the ATARI 800/400 or to a RS-232 terminal. COMING SOON: COMMODORE VIC-20 and TI 99/4 interfacing!

TandonDrives with Power Supply for ATR 8000 Single Density	399.00	
ANNOUNCING:		

WHIZ KID
by ROMOX
REQUIRES 8K,CARTRIDGE, JOYSTICK,KEYEOARD
FRICE $\$ 41.50$
REVIEWED EY Harvey Cobb
Whiz Kid is a one or two player graphic hockey game that also has some educational value. You use a joustick to control a character that is holding a hockey stick. Your character is on a skating rink filled with blocks o ice. Each block o ice has a lette on it. The objective is to use your character to rearrange te blocks until they match the word that appears on the bottom of th screen. Also on the screen are three compute controlled goalkeeper characters tha chase your character. If your character is touched by one of te goalkeepers, you character loses one of three lives. You are awarded points fo matchin the word and fo hitting the goalkeepers with a block of ice.

Your have a number of options. You may choose the word option to use te preprogrammed words and equations or to type in a list of your own words or equations. You have a choice of five levels of difficulty. The higher te number, th faster te movement of he characters.

Whiz Kid can be played by anyone old enough to use a joystick. The edicutional value is geared for preschool aged children. The gaming stratagy and design is geared for preteens.

FORTH SIG

The next FORTH SIG meeting will be held 08-11-83 at 7:30 the home of Don Care. 1405 Woodcreek Dr:" Richardson; T\%. $75081 \mathrm{H}-235-6126$

> DAL-ACE Eusiness SIG

The next meeting of the DAL-ACE Business SIG will be held Aug 18 at 7:30 at the home of Rich Greenlee, 512 Copher Court, Euless, T\%. H-267-7428. $1 / 2$ mile 5 . of 183 off Main St. exit.

DAL-ACE EDUCATION SIG
The next meeting of the DAL-ACE Education SIG will be held the Wed. prior to the regular Saturday meeting at $6: 30$ at Software etc., 14400 Dallas Farkway (across from Ewing Buick).

YOUNG PEOPLES SIG
This group meets 1 hour before the regular club meeting. Open to members 8 to 16. Contact Chrris Magid. 241-7320.

DISCLAIMER

The articles and ads contained in this newsletter do not necessarily reflect the views of this newsletter or of the club. (You the reader are the final judge on anything you read.)

8 REM＊＊＊SET MAX MESG LENGTH＊＊＊
9 REM
10 MSGLEN＝120
28 DIM MESG3（MSGLEN），M\＄（MSGLEN），SAN\＄（1）
25 REM＊＊＊INITIALIZE MESGE TO 0 （SCREEN SPACES）＊＊＊
26 REM
38 MESG3（1）＝CHR (6)
48 MESG $\$$（MSGLEN，MSGLEN）＝CHR $\$(0)$
50 MES6（2）＝MESG 6
54 REM
55 REM＊＊＊INPUT MESSAGE＊＊＊
68 GRAPHICS 0
70 POSITION 5,18
80 ？＇ENTER MESSAGE＂：？：INPUT M
98 MGGLEN＝LEN（M）：IF MSELEN＝0 THEN 68
94 REM
95 REM＊＊＊CALL SUBROUTINE TO CREATE 25 LINE OISPLAY LIST $* * *$ 96 REM
188 GOSUB 308
184 REM
185 REM＊＊＊CALL SUBROUTINE TO CONNERT MESSAGE TO＊＊＊
186 REM＊＊＊INTERNAL SCREEN CODE
＊＊＊
118 GOSUB 688
191 REM
192 REM＊＊＊THIS LOOP SAVES THE FIRST CHARACTER OF MESGO；＊＊＊ 193 REM＊＊＊MOUES THE REST OF THE STRING TO THE LEFT ONE $* * *$ 194 REM $* * *$ CHAFACTER POSITION，PUTS THE SAVED CHARACTER $* * *$
195 REM＊＊＊INTO THE LAST CHARACTER POSITION OF MESG末，
196 REM＊＊＊AND THEN DOES IT ALL ONER AGAIN．
197 REM
$208 \mathrm{SAN} \$=\mathrm{MESG} \$(1,1)$
210 MESG $\#=1$ ESG $\$(2)$
220 MESG才 1 MSGLEN，MSGLEN）$=$ SAN 1
230 FOR D＝0 TO $15: N E X T D$
2486070290
294 REM
295 REM＊＊＊SUBROUTINE TO CREATE 25 LINE DISPLAY LIST＊＊＊
296 REM
300 GRAPHICS 8：POKE 82，8：POKE 752，1
304 REM
305 REM＊＊＊TURN ANTIC OFF UHILE WE MESS＊＊＊
306 REM＊＊＊AROLND WITH THE DISPLAY LIST＊＊＊
307 REM
310 POKE 559,8
314 REM
315 REM＊＊＊INITIALIZE POINTERS TO MESG $* * *$
316 REM
320 MESGHI $=$ INT（ADR（MESG $\$$ ）／256）
330 MESGLO＝ADR（MESG才）－MESGHI 256
334 REM
335 REY $3 * *$ INITIALIZE DISPLAY LIST POINTERS $* * *$
336 REM＊＊＊TO OLD DISPLAY LIST
337 REM
340 DLLO $=$ PEEK（560）
358 DLHI＝PEEK（561）

355 REM＊＊＊ADD ONE TO THE POINTER OF THE DIGPLAY LIST
356 REM＊＊＊SO THAT WE WLL BYPASS CHE BLANH LINE
357 REM＊＊＊INSTRUCTION．WHICH WILL GIVE US ROTHA TO
358 REM＊＊＊INSERT THE 25TH LINE．
360 DLSTART $=(0 L L O+D L H 1 * 256)+1$
370 DLNELKOLHI $* 256$
380 POKE 560，8：POKE 561，DLNEW／256
384 REM
385 REM＊＊＊WE HAVE TO MONE THE OLD DISPLAY LIST＊＊＊
386 REM＊＊＊TO MAKE ROOH FOR THE ADOED INSTRUCTIORS＊＊＊
387 REM
398 FOR $I=8$ TO 27
408 POKE OLNE +1 ，FEKKOLSTART +1 ）
410 NERT I
414 REM

416 REM＊＊＊WITH THE ADOESS OF MESG筑＊＊＊
417 REM
420 POKE DLNEL 23,66
430 POKE DLHELT 27 ，FESGLO

444 REM

446 REM $7 * *$ AND ADORESS OF START OF DISPLAY LIST
447 REM
450 POKE DLNE $4+31,65$
468 FOKE OLNE $+32,8$
470 POKE DLNEN 32 ，DLNEU／ 256
474 REM
475 REM $3 * *$ LOOP TO WRITE LINE NiHAEES ON $* * *$
476 REM＊＊：LEFT HEND SIDE OF THE SRREEN $* * *$
477 REM
480 FOR $1=17024$
498 POSTTION $8,1-1$
500 险 $1 / 1 \mathrm{THEN}$ ？＂；
518 ？I；
520 NET I
524 RE
525 REA $3 *$ THFT ATHE BACK ON＊＊＊
526 REM
538 POKE 559，34
548 RETURN
594 REM
595 REM＊＊＊SUBROUTINE TO CONVERT FROR＊＊＊
596 REM＊＊＊ATASOI TO INTERAKL SREEX OOD＊＊＊
597 REM
688 FOR $1=1$ T0 LEN（侍）
$618 \mathrm{~T}=\mathrm{ASCOM}(1,1))$
620 IF T132 THEN $T=T+64: 60 T 0648$
630 IF T＜96 THEN $T=T-32$

658 NEXT 1
600 RETURN

TAPE USERS NEED THE TIC-600 !!

Instead of using a program recorder, you can use the TIC-600 which is a tape interface and controller that connects your Atari computer to your present tape deck.

1. The T/C-600 is automaticl You can select between manual or automatic tape movement control. In auto mode the computer starts and stops tape movement which some programs require. In manual mode your reel-to-reel, 8-track, VCR, or cassette deck operates as it normally does when you manually press it's controls. This permits high speed tape movement and file searching.
2. The TIC talks ! The TIC-600 talks to you with two lights that tell you when you have selected manual or auto mode during all times that the computer is accessing your tape drive. If you forget to press return as your computer requires before it will receive or store data on your tape, you will know it because a light has not lit. The light comes on only when the computer tries to get data from - or give data to your tape drive.
3. The TIC-600 uses precision high quality components that provide maximum reliability for $\mathbf{6 0 0}$ baud rate data storage and retrieval. The quality of the standard program recorder is no longer a limiting factor in getting error-free loads.
4. The TIC-600 allows usage of the better grades of tapes that the standard program recorder should not use, if your tape deck has the controls for high bias ferric, chromium dioxide or metal type tapes. These permit heavy use over long periods of time without data loss.
5. The TIC-600 can be used reliably to handle special programs that contain the 900 baud rate software. It can be upgraded to reliably handle 1200 baud rate. This permits faster loads because the data density is increased 50% and 100% at the 900 and 1200 baud rates.
6. The TIC-600 is available in kit form or as a fully completed and $\mathbf{1 0 0 \%}$ tested accessory for your Atari computer.
Kits are available for $\$ 35.00$..... Completed units are $\$ 45.00$
** If you purchase the T/C-600 this month (August), the completed units will be **

The TIC-600 is manufactured by Crystal Cable Company which also makes home computer cables. The Dallas area representative is John Blaschka. You can contact him at (214) 620-8210 most days and evenings. Also, you can leave a message for \#356 on the DAL-ACE BBS ... (214) 589-1254.

DAL-ACE

NEXT MEETING -

LIONS DEN - 600 N. FIFTH ST.
GARLAND: TX.
TAKE GARLAND RD. NORTH UNTIL
YOU REACH STH. TURN LEFT.
TIME: 2:00 PM DATE: SEPT. 3,1983

MEETING AGENDA

```
1:00 T0 2:00 SALES
2:00 T0 2:30 BUSFNESS MEETING
2:30 TO 2:45 GENERAL QUESTIONS
2:45 TO S:15 TECHNICAL QUESTIONS
3:15 TD 3:45 EREAK,NEWSLETTERS AND SALES
#:45 TO 5:00 DEMOS ETC.
```

ADVERTISING FATES
Personal Classified Ads: FREE
Commercial Classified Ads: Half Page - \$25.00
(Must Ee Camera Fieady Copy!) Full Page - $\$ 35.00$
Deadline: 15 th of each Month Mail to Editor, c/o DAL-ACE

Purchasing : Jack Withrow 680-8947
Ed Kobus 492-2922
Education " Jeff Futherford 1-727-2945
BES : 817-589-1254
Library : Ernie Runyon 817-595-2243

The clubs Tecnical Feference Manuals are available for क5. OO + 象1.50 shipping or pick up at club meeting. A real good deal for a 104 pages that are nicely bound (spiral spine).
*** New prices on club disks !!!. Club library disks are now $\$ 5.00$ each. Take advantage of a package deal and buy 3 - get one free.

FUTURE MEETING AGENDA

AUGUST - DATA EASES FEATURING FILEMANGEFI 8OO, DATA PERFECT: AND THE DATA EASE PROGFAM IN THE LIBRARY.

SEFT - GRAFHICS - FEATURING GRAFHIC FROGRAMS SUCH AS ERAFHIC MASTER, FAINT, MICFO-FAINTEF; ETC.

DALLAS ATARI COMPUTER ENTHUSIAST (DAL-ACE)
is an independent user education group not affiliated with ATARI, Inc.. This is the official newsletter of the DAL-ACE and is used for the education of its members as well as dissemination of information concerning ATARI =omputer products.

Subscriptions are $\$ 16.00$ per year, good for 12 months, with renewal shown on newsletter label. Other user groups may obtain free subscriptions with the exchange of newsletters.

All material may be reprinted in any form, provided that DAL-ACE and author, if applicable, are given credit.

DALLAS ATARI COMFUTER ENTHUSIASTS

OFFICERS
President : Gary Sewell
1-727-6567
V-President: Tom Schaeper
242-2483
Secretary : Susan Henderson
817-497-3877
Treasurer : Ed Kobus
492-2922
Member : Jack Withrow
680-8947
Member : Jim Chaney
231-4402
Editor
: Harry Hafele
348-7745

DAL-ACE

